School of Rocks

Subtyping Enhances Superordinate-Level Learning of Dispersed Category Structures Alex Gerdom Advisor: Robert Nosofsky

Background

- Categories exist at various levels of abstraction
 - e.g. Furniture is a more abstract category than chairs
 - We would say that chairs are a sub-type of furniture
 - We would say that furniture is a superordinate category of chairs
 - More well defined: Scientific Taxonomies
- We still know little about learning functions in such domains

Research Question

- If you want to learn categories at the superordinate level, is easier to learn the superordinate categories alone or should one attempt to simultaneously learn at the subtype level as well?
- Intuitively, learning just the high level categories seams easier
- Suspected there are types of category structure in which this is not always true

Presentation Outline

- Learning involving multiple levels of abstraction
- Geological Taxonomy
- Compactness of Category Structures
- Methods
- Results
- Discussion and Future Work

Previous Findings

Lassaline, Wisniewski, and Medin (1992)

- Used category verification task to see whether level advantages could be obtained in situations where categories lack defining features
- Found that one level or another may be easier to learn even in cases involving fuzzy categories
- Which level is easier to learn may be sensitive to how diagnostic features are distributed across dimensions

Palmeri (1999)

- Replicated findings under category learning paradigm
- Marked successful attempt to model effects across multiple levels

Previous Findings (Cont.)

Noh, Yan, Vendetti, Castel, and Bjork (2014)

- Looked at the interactions between attended level, intrinsic value, and ability to learn categories at two levels of specificity
- Design
 - Subjects shown a label with genus of the snake and a high or low value label
 - Instructed to learn either general or specific level labels and tested on both levels
- Findings
 - 1. Subjects performed better on the level they were instructed to attend to
 - 2. Specific level performance better for subjects who were instructed to learn at that level if they saw low value labels
 - 3. High level performance better for subjects who were shown high value labels

Geological Taxonomy

- 3 primary categories based on mode of formation
- Many subtypes with more nuanced classification schemes

Compactness of category structures

Methods: Experimental Design

Supervised Category Learning Experiment

- Shown images of rocks and asked to provide the category
- 4 Blocks
 - 3 Training Blocks (Feedback Given)
 - 1 Transfer Block (No Feedback, Additional Stimuli)
- Manipulations
 - Stimuli Set (Between Group)
 - Half of participants received compact stimuli set
 - Half of participants received dispersed stimuli set
 - Learned Level (Between Group)
 - Half of participants learn super ordinate categories (Ign., Sed., Meta.)
 - Half of participants learn subtypes (I1, I2, I3, M4, M5, M6, S7, S8, S9)
 - When stimuli were presented (Within Group)
 - Half of stimuli presented in Training and Transfer Blocks
 - Half of stimuli presented only in Transfer

Stimulus Sets

- 2 Stimulus Sets
 - 9 subtypes (6 images/subtype)
- Set Construction
 - Assembled a list of candidate subtypes for each of the 3 main categories
 - Collected images from various online geology databases
 - Selected to fit desired category structure
 - Cleaned images to remove distracting features
- Confirmed Category Structures using MDS Scaling Study

Compact Condition

Dispersed Condition

Dimensions

But was it compact?

Subtype	I1	I2	I3	M4	M5	M6	S7	S8	S9
Ign.1	0	0.627	0.417	0.798	0.696	0.465	1.045	1.163	0.76
Ign.2	0.627	0	0.343	1.074	0.717	0.896	0.967	0.821	0.626
Ign.3	0.417	0.343	0	0.876	0.657	0.721	1.146	1.054	0.824
Met.4	0.798	1.074	0.876	0	0.462	0.442	1.28	1.205	1.272
Met.5	0.696	0.717	0.657	0.462	0	0.494	0.928	0.758	0.916
Met.6	0.465	0.896	0.721	0.442	0.494	0	1.001	1.112	0.937
Sed.7	1.045	0.967	1.146	1.28	0.928	1.001	0	0.605	0.484
Sed.8	1.163	0.821	1.054	1.205	0.758	1.112	0.605	0	0.758
Sed.9	0.76	0.626	0.824	1.272	0.916	0.937	0.484	0.758	0
				Dispers	ed Set				
Subtype	I1 I2	L I3	I	M4	M5	M6	S7	S8	S9
Ign.1	0	0.892	0.948	0.587	1.023	0.92	1.074	0.911	0.39
Ign.2	0.892	0	1.28	0.644	0.717	1.223	1.046	1.112	0.626
Ign.3	0.948	1.28	0	0.723	1.102	0.068	1.285	0.234	1.212
Met.4	0.587	0.644	0.723	0	0.88	0.682	1.167	0.637	0.659
Met.5	1.023	0.717	1.102	0.88	0	1.035	0.462	0.878	0.916
Met.6	0.92	1.223	0.068	0.682	1.035	0	1.227	0.168	1.168
Sed.7	1.074	1.046	1.285	1.167	0.462	1.227	0	1.097	1
Sed.8	0.911	1.112	0.234	0.637	0.878	0.168	1.097	0	1.112
Sed 0	0 39	0.626	1,212	0.659	0.916	1,168	1	1.112	0

Compact Set

How it is distributed

Link For Compact Solution

Link For Dispersed Solution

Quick Recap

- Question: What level should be learned to maximize learning of superordinate categories?
- 2x2(x2) factorial experiment
 - Between subjects
 - Learned level (learn sub-type or superordinate)
 - Category Structure (learn compact structure or dispersed structure)
 - Within subjects
 - Whether stimuli were old or new
 - Measuring PC with respect to superordinate category separately for old and new stimuli.

Main Effect of Stimulus Novelty (Training > Transfer) [$F(1,120) = 384.0, p < .001, \eta_G^2 = 0.393$]

Main Effect of Category Structure (Compact > Dispersed) [F (1,120) = 182.0, p < .001, $\eta_G^2 = 0.547$]

Interaction Category Structure X Stimulus Novelty [F (1,120) = 98.7, p < .001, $\eta_G^2 = 0.143$]

Interaction Category Structure X Learned Level [F (1,120) = 18.6, p < .001, $\eta_G^2 = 0.11$]

Conclusions: Summary

- Question: If you want to learn categories at the superordinate level, is easier to learn the superordinate categories alone or should one attempt to simultaneously learn at the subtype level as well?
- Answer: It depends on compactness of category structure
 - Compact Structure → (Direct Learning > Indirect Subtype Learning)
 - Dispersed Structure → (Indirect Subtype Learning > Direct Learning)

Implications of Findings

- Learning distinctions that are not relevant for high-level categorizations does not necessarily detract from ability to make those categorizations
- Studies should more frequently look at scenarios involving more than one level of abstraction

Conclusions: Limitations and Unanswered Questions

- Nomenclature
 - What is the difference from learning "Igneous 1" vs "Igneous Gabbro"
- A working hypothesis for mechanism
- To what extent categories in the natural world tend to display compact or dispersed structure?

Questions?